- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Wineman, Alan (2)
-
Bustamante, Roger (1)
-
De_Vita, Raffaella (1)
-
Dillard, David (1)
-
Dubik, Justin (1)
-
Rajagopal, Kumbakonam R (1)
-
Tartaglione, Alfonsina (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bustamante, Roger; Rajagopal, Kumbakonam R; Wineman, Alan (, Mathematics and Mechanics of Solids)We study the response of a class of transversely elastic bodies, wherein the Green–Saint Venant strain tensor is a function of the second Piola–Kirchhoff stress tensor, when the body is residually stressed. The notion of such non-Cauchy elastic bodies being transversely isotropic is defined in Rajagopal (Mech. Res. Commun. 64, 2015, 38–41), and by a body being residually stressed, we mean the interior of the body is not in a stress-free state although the boundary is free of traction as considered by Coleman and Noll (Arch. Ration. Mech. Anal. 15, 1964, 87–111) and by Hoger (Arch. Ration. Mech. Anal. 88, 1985, 271–289).more » « lessFree, publicly-accessible full text available November 1, 2025
An official website of the United States government
